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ABSTRACT
This article presents a novel kinematic model and controller

design for a mobile robot with four Centered Orientable Con-
ventional (COC) wheels. When compared to non-conventional
wheels, COC wheels perform better over rough terrain, are not
subject to vertical chatter and offer better braking capability.
However, COC wheels are pseudo-omnidirectional and subject
to nonholonomic constraints. Several established modeling and
control techniques define and control the Instantaneous Center of
Rotation (ICR); however, this method involves singular configu-
rations that are not trivial to eliminate. The proposed method
uses a novel ICR-based kinematic model to avoid these singu-
larities, and an ICR-based nonlinear controller for one ‘mas-
ter’ wheel. The other ‘slave’ wheels simply track the resulting
kinematic relationships between the ‘master’ wheel and the ICR.
Thus, the nonlinear control problem is reduced from 12th to 3rd-
order, becoming much more tractable. Simulations with a feed-
back linearization controller verify the approach.

1 INTRODUCTION
Omnidirectionality has become a vital feature for Wheeled

Mobile Robots (WMRs) employed in cluttered, hazardous and
highly dynamic environments. The increased maneuverability
of omnidirectional WMRs (OWMRs) allows for a high degree
of flexibility in the planning of motion-efficient paths through
free space. The majority of well-established design, modeling,

∗Address all correspondence to this author.

Figure 1: Nuclear Robotics Group’s pseudo-omnidirectional
WMR

and control techniques for OWMRs [1] [2] involve the use of (i)
non-conventional wheels, such as Mecanum wheels and omnidi-
rectional wheels, and/or (ii) orientable conventional wheels.

Non-conventional wheels are subject to highly complex me-
chanics [3] and are consequently difficult to model accurately.
In addition, these wheels tend to vibrate vertically, have limited
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load capacity [4], generate undesirable swerving motions during
braking [5], and cannot traverse rough terrain.

Orientable, or steered, conventional wheels are omnidirec-
tional and subject to holonomic constraints if and only if there
is a non-zero steering axis offset [6]. Hence, since Centered
Orientable Conventional (COC) wheels - by definition - have no
steering axis offset, they are pseudo-omnidirectional and subject
to nonholonomic constraints. This is due to the fact that a reori-
enting steer command must be executed for each wheel before
a specific robot velocity and orientation can be attained. Thus,
the precise coordination of wheel drive and steer commands for
such WMRs is necessary to avoid slip and damage to the wheel
modules. Campion [7] established that for WMRs with more
than 2 COC wheels, the wheels must be coordinated such that
the degree of steerability, δs, is 2. Here, δs is the number of COC
wheels that can be oriented independently in order to steer the
robot. This implies coupling of particular wheel motions and re-
dundancies in the control of WMR wheel modules. Muir and
Neuman [1] also note that COC wheels have singular wheel Ja-
cobian matrices. Therefore, the soluble motion criterion is not
satisfied, and Muir and Neuman’s proposed actuated inverse so-
lution cannot be used for the control of WMRs with COC wheels.

Thus, the modeling and control of WMRs with COC wheels
is challenging. One approach is to coordinate each wheel’s drive
speed and orientation with respect to the Instantaneous Center of
Rotation (ICR). The Instantaneous Center of Rotation (ICR) is
defined as the point in the WMR’s plane of motion about which
the robot instantaneously rotates about. Thuilot [8] proved that
any admissable wheel configuration can be uniquely identified
by the coordinates of its associated ICR, assuming it is not lo-
cated at a wheel center. More generally, ICR modeling is effec-
tive provided singular configurations are considered and avoided.
There are two singularities the ICR representation is subject to.
The first, stated above, is the singularity caused when the ICR is
located at a wheel center. The second singularity occurs during
pure translation. In this case, the ICR is at infinity. Deitrich [9]
used Khatib’s [10] methodology of classifying singular configu-
rations as obstacles with repulsive potential fields. Connette [11]
represented the ICR in spherical coordinates in order to elimi-
nate the second singularity and allow for simpler control. In a
later paper [12], Connette detailed the use of repulsive potential
fields around the wheel axes to avoid the first singularity and as-
sociated unbounded steering rates when the ICR passes near, but
not through, the wheel steering axis.

This paper presents a novel ICR-based master-slave kine-
matic modeling and control method for WMRs with COC wheels
(see Fig. 2) that eliminates the singularities detailed above.
Firstly, a brief overview of our WMR is provided. Secondly,
we discuss the derivation of the kinematic model. Finally, we
present a nonlinear control solution for the developed model.

2 PLATFORM OVERVIEW
The considered WMR (see Fig. 1) consists of a square alu-

minum frame with 4 wheel modules at each of its corners. The
wheel modules used are the Swerve and Steer Modules from
AndyMark Inc. Each module includes one drive CIM motor and
one steer PG71 Planetary Gearbox with RS775 motor. A hall
effect encoder is included on the PG71 gearmotor, and an abso-
lute encoder is used to record the steer orientation. The wheel
module’s design allows the steering axis to be directly above the
wheel-floor contact, i.e. there is no steering-axis offset (see Fig.
2).

Figure 2: Swerve and steer module. One motor controls drive
speed, another controls steer angle of the wheel.

The system design was motivated to assist with alpha radia-
tion contamination surveys [13]. To complete radiation surveys,
the sensor must be held approximately 1/4 inch above the sur-
veyed floor and move at approximately 2 inches/second. Fur-
thermore, as a precaution to prevent the wheels from spreading
contamination, the platform must be able to survey an environ-
ment with trajectories that avoid placing the wheels in locations
that have not been surveyed. Thus, a holonomic (or near holo-
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Figure 3: Coordinate frame conventions

nomic) solution allows for flexibility in planning these trajecto-
ries. While our WMR lacks true holonomic control, it can be
assumed to be omnidirectional at sufficiently fast steer speeds
and with well-tuned low-level motor controllers.

Figure 3b depicts the platform schematically. W, and L are
the robot body width and length respectively. In the inertial
frame {0} (see Fig. 3a), the robot’s position and orientation are
defined by xr, yr, and θ, the angle with respect to x. (xr, yr) can be
any point on the robot’s chassis; we chose the geometric center.
The robot frame, {R} is defined to be fixed to (xr, yr) and rotates
with the WMR. 0mmmiii, with i ∈ {1,2,3,4}, is an (x, y) vector in
frame {0} representing the locations of the wheel modules.

The following presents the system kinematics.

3 ICR-BASED MASTER-SLAVE KINEMATIC MODEL-
ING
The location of the ICR in the inertial frame can be ex-

pressed as [14],

xxx =
[

xICR
yICR

]
=

[
xr− ẏr/ω

yr + ẋr/ω

]
(1)

where ω = θ̇. Let 0eee be any vector (ex, ey) defined in frame {0}.
It can be shown that [14],

0ėee = ω

[
−yρ

xρ

]
(2)

Here, yρ = ey−yICR and xρ = ex−xICR. Thus, we use Eq. 2
to find the velocities at the x-y positions of the wheel modules in
frame {0} (0mmm111,0mmm222,0mmm333,0mmm444):

0ṁmmi = ω

[
−miy + yICR
mix − xICR

]
(3)

where i∈ {1,2,3,4}. For this particular platform design, the
four wheels are spaced evenly about the center of the platform. In

particular, RRRmmm111 =
[
−W/2

L/2

]
,RRRmmm222 =

[
W/2
L/2

]
,RRRmmm333 =

[
W/2
−L/2

]
, and

RRRmmm444 =
[
−W/2
−L/2

]
. We define the transformation from the robot to

inertial frame to be,

0mmmiii =

[
mix
miy

]
=

[
xr
yr

]
+

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
Rmmmiii (4)

Substituting Eq. 4 and Eq. 1 in Eq. 3:

0ṁmm1 =

[ W
2 ωsin(θ)− L

2 ωcos(θ)+ ẋr
−W

2 ωcos(θ)− L
2 ωsin(θ)+ ẏr

]
(5)

0ṁmm2 =

[−W
2 ωsin(θ)− L

2 ωcos(θ)+ ẋr
W
2 ωcos(θ)− L

2 ωsin(θ)+ ẏr

]
(6)

0ṁmm3 =

[−W
2 ωsin(θ)+ L

2 ωcos(θ)+ ẋr
W
2 ωcos(θ)+ L

2 ωsin(θ)+ ẏr

]
(7)

0ṁmm4 =

[ W
2 ωsin(θ)+ L

2 ωcos(θ)+ ẋr
−W

2 ωcos(θ)+ L
2 ωsin(θ)+ ẏr

]
(8)

Rearranging Eq. 5, we get the following two differential
equations that express the WMR’s x and y velocities as functions
of θ, ω, and ṁ1x / ṁ1y ,

ẋr = f (θ,ω, ṁ1x) =
−W

2
ωsin(θ)+

L
2

ωcos(θ)+ ṁ1x (9)

ẏr = f (θ,ω, ṁ1y) =
W
2

ωcos(θ)+
L
2

ωsin(θ)+ ṁ1y (10)

Noting that θ̇ = ω, we have effectively obtained three state
equations with states (xr, yr, θ) and inputs (ṁ1x , ṁ1y , ω). Thus,
a control schema can be formulated (detailed in following sec-
tions) such that in each control cycle, a nonlinear controller de-
termines the appropriate inputs i.e. the x and y velocities for
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wheel module 1 in {0} frame, (ṁ1x , ṁ1y ). Next, the states and
outputs from the controller can be used to determine 0ṁmm2, 0ṁmm3,
and 0ṁmm4 (using Eq. 6,7,8). Thus, we can use feedback control on
the kinematic model for any single wheel module - in our case,
we chose the module located in frame {0} by 0mmm111 - to solve for
all the required wheel module velocities in {0} frame. We call
the wheel chosen for feedback control the ‘master’ wheel and the
remaining wheels the ‘slave’ wheels. By nature of the derivation
of the wheel module velocities in the {0} frame (Eq. 5-8), the
slave wheels coordinate their drive speeds and steer angles to en-
sure their drive axes always coincide with the ICR. An added
benefit of this strategy is that the nonlinear control problem be-
comes more tractable since it reduces the order of the controlled
system from 12 to 3. While the derivation here was specific to
this platform geometry, the method is extensible to many other
geometries.

Once the wheel module velocities are determined in {0}
frame, we can determine each wheel module’s required drive
speed and steer angle, assuming no slip:

ψi =

√
ṁ2

ix + ṁ2
iy

rwheel
(11)

φi = atan2(
ṁiy

ṁix
)−θ (12)

where ψi is the ith wheel module drive speed, rwheel is the
wheel radius (same for all four wheels), and φi is the ith wheel
module steer angle. Thus, our chosen parameterization disallows
ω = 0 to be a singularity. When ω = 0, the {0} frame velocity of
the master wheel and subsequently, the slave wheels, will simply
be equivalent to (ẋr, ẏr), resulting in pure translation.

4 CONTROL
4.1 CONTROLLABILITY

To analyze controllability, from Eq. 9, 10, and θ̇ = ω, the
system is rewritten in state-space form:

xxx≡

x1
x2
x3

≡
xr

yr
θ

 , uuu≡

u1
u2
u3

≡
ṁ1x

ṁ1y

ω

 , yyy≡ xxx (13)

ẋ1
ẋ2
ẋ3

=

1
0
0

u1 +

0
1
0

u2 +

−W
2 sinx3 +

L
2 cosx3

W
2 cosx3 +

L
2 sinx3

1

u3

≡ ggg111u1 +ggg222u2 +ggg333u3 (14)

This matches the format of a nonlinear, input-affine system
with fff (xxx) = 000:

ẋxx = fff (xxx)+
m

∑
i=1

gggiii(xxx)ui (15)

The accessibility distribution for this system is given by
[15],

CCC = [ggg111 ggg222 ggg333 [ggg111,ggg222] [ggg111,ggg333]

[ggg222,ggg333] [ggg111, [ggg111,ggg222]] [ggg111, [ggg111,ggg333]] [ggg222, [ggg222,ggg333]]] (16)

where [gggiii,ggg jjj] is a Lie bracket operator:

[gggiii,ggg jjj] =
δggg jjj

δxxx
gggiii−

δgggiii

δxxx
ggg jjj (17)

[gggiii,ggg jjj] = 000 denotes that the relative effect of gggiiiui versus
ggg jjju j will not vary as xxx changes; thus, a change in xxx does not
yield an extra avenue to control the system. Higher-order Lie
brackets are calculated recursively, i.e. [gggiii, [gggiii,ggg jjj]] can be calcu-
lated from the result of [gggiii,ggg jjj].

The calculation of [ggg111,ggg333] below serves as an example:

[ggg111,ggg333] =
δggg333

δxxx
ggg111−

δggg111

δxxx
ggg333 =0 0 −W

2 cosx3− L
2 sinx3

0 0 −W
2 sinx3 +

L
2 cosx3

0 0 0

1
0
0

− [000]∗ggg333 =

0
0
0

 (18)

In this case, it is clear from the first three columns of CCC that
the distribution is full rank. Thus, it is not necessary to evaluate
the Lie brackets. For the sake of completeness, the end result for
the accessibility distribution of this system was calculated:
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CCC =

1 0 −W
2 sinx3 +

L
2 cosx3 0 0 0 0 0 0

0 1 W
2 cosx3 +

L
2 sinx3 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 (19)

Per Hedrick, since fff (xxx) = 000 and rank(CCC) = 3 (from Eq. 19
above), this driftless system is controllable. Thus, the master
wheel can theoretically be controlled to yield any desired posi-
tion and orientation of the mobile platform.

4.2 CONTROL STRUCTURE
A schematic of the proposed control structure is provided

in Fig. 4. In this diagram, the NC block is the Nonlinear Con-
troller detailed in Section 4.3 below, the LLC blocks are Low-
Level wheel Controllers and the Mi blocks, with i ∈ {1,2,3,4},
are the kinematic models of each wheel module. Here, the low-
level controller block is an abstraction for feedback control using
encoder data.

In each control cycle, we solve for the slave wheel velocities
in the inertial frame, ṁmm2, ṁmm3, and ṁmm4 using Eqs. 6, 7 and 8 respec-
tively. We then use Eq. 11 and 12 to find the required steer angle
and drive speed of each slave wheel. For the sake of the argument
for omnidirectionality of such WMR platforms, the tuned LLCs
are run at a higher frequency than the NC. This ensures that the
drive speeds and steer angles prescribed by the open-loop non-
linear controller are rapidly and accurately attained.

4.3 NONLINEAR CONTROLLER IMPLEMENTATION
In this section, we present feedback linearization as a non-

linear control technique for the input-affine and driftless system
given by Eq. 14:

ẋxx = GGGuuu (20)

where GGG =
[
ggg111 ggg222 ggg333

]
. Thus, we chose the control input to

be of the form,

uuu = GGG−1ũuu (21)

where ũuu is an equivalent input (i.e. uuu is easily determined
from ũuu and vice versa). Since det(GGG) 6= 0 ∀ x3 ∈R, GGG is globally
invertible and the control law is globally defined. As a result, the
nonlinearity is canceled and we obtain the obviously linear and
controllable system,

NC M1

LLC[
ψ1
φ1

]
xxxd uuu

xxx

d
dt

M3 LLC

xxx

[
ψ3
φ3

]
M4 LLC

[
ψ4
φ4

]
M2

xxx, ẋxx

LLC

[
ψ2
φ2

]

Figure 4: Control Structure

ẋxx = ũuu (22)

A well-known solution for the new dynamics is the control
law:

ũuu = kp(xxxddd− xxx) (23)

where kp is the tunable proportional gain and xd is the vector
of desired state values.

In the context of this paper, the nonlinear controller can be
thought of as a black box that is simply used to demonstrate the
‘master-slave’ kinematic modeling and control technique. Model
predictive control is another viable control technique for this sys-
tem.

5 SIMULATION RESULTS
The proposed kinematic model and nonlinear control struc-

ture were implemented in MATLAB. Both the width and length
of the WMR in our simulation are assumed to be 1 m; the wheel
radius is assumed to be 0.1 m; and, the maximum wheel drive
speed is assumed to be 10 rad/s.

Figure 5 depicts the robot motion in the {0} frame with
the arbitrarily chosen state setpoints, xr = yr = 1 m and θ = 1
rad. It is evident that the robot is able to reach its desired final
(green) configuration, starting from its initial (black) configura-
tion. Figure 9 shows the control inputs decrease asymptotically
to zero, verifying the stability of the control solution. The state
response with the chosen set of target values can be seen in Fig.
8. Since the control law, ũuu, for the linearized system dynamics in
Eq. 22 is simply proportional control with a scalar proportional
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gain (given by Eq. 23), the three system states, x1,x2,x3, share
the same time response. It is also clear from Fig. 8 that there is
neither steady-state error nor overshoot, which are highly desir-
able response characteristics for accurate motion planning. This
is simply the result of tuning the proportional gain, kp. It must be
noted that the constant kp may not be chosen arbitrarily. Granted
that the actuators on the robot have saturation limits (maximum
drive speeds), kp is upper bounded. Following from Eq. 11,

u2
1 +u2

2 ≤ (rψmax)
2 (24)

where r is the wheel radius, ψmax is the maximum wheel
drive speed, and u1, u2 are the first and second control inputs,
ṁ1x and ṁ1y respectively. From Eqs. 21 and 23, we solve for u:

uuu = GGG−1ũuu = GGG−1kp(xxxddd− xxx) (25)

Thus, we get the following expressions for u1 and u2:

u1 = kp
[
(xd1− x1)+(0.5sinx3 +0.5cosx3)(xd3− x3)

]
(26)

u2 = kp
[
(xd2− x2)+(−0.5sinx3−0.5cosx3)(xd3− x3)

]
(27)

where xd1, xd2, and xd3 are the desired setpoints for states
x1, x2, and x3 respectively. Maximizing the function h(u1,u2) =
u2

1 +u2
2:

hmax = k2
p
[
∆x2

1 +∆x2
2 +∆x2

3 +
√

2∆x1∆x3−
√

2∆x2∆x3
]

(28)

where ∆xi = |xdi−x0i|, and x0i is the initial condition for the
ith state. Therefore, the first inequality kp must satisfy is given
by:

kp ≤

√
(rψmax)2

∆x2
1 +∆x2

2 +∆x2
3 +
√

2∆x1∆x3−
√

2∆x2∆x3
(29)

Here, r and ψmax are assumed to be strictly positive. Thus,
∆x2

1 +∆x2
2 +∆x2

3 +
√

2∆x1∆x3 >
√

2∆x2∆x3 must be satisfied.
The second inequality is similarly derived from Eqs. 6-8:

Figure 5: WMR motion in {0} frame

kp ≤

√
(rψmax)2

(0.5∆x3 +∆x1)2 +(0.5∆x3 +∆x2)2 (30)

Once Eqs. 29 and 30 are evaluated, the lower of the two
bounds is used to determine an appropriate kp. Note that this
method was developed for WMRs with square dimensions (W =
L). Finding kp for non-square geometries is more involved, but
follows from the method detailed above.

For the WMR parameters and setpoints specified earlier
in this section, kp ≤ 0.4714. Figure 6 verifies that the drive
speeds of all four wheels are within the desired saturation lim-
its. Since the plots of drive speeds (Fig. 6) and steer angles
(Fig. 7) are smooth, continuous and monotonically decreasing,
the WMR motion is also smooth without sudden jumps or halts.
The time constant of the response is derived from Eq. 22 to be,
τ= 1/kp = 2.12s. While faster responses are possible with larger
saturation limits, they are also more susceptible to errors from
the unaccounted system dynamics.

6 CONCLUSION
In this paper, we discussed the modeling and control prob-

lem for a wheeled mobile robot (WMR) with centered orientable
conventional wheels. First, we presented the derivation of an in-
stantaneous center of rotation (ICR)-based kinematic model that
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Figure 6: Drive speeds for each wheel module

Figure 7: Steer angles for each wheel module

defines the robot x, y velocities and angular rotation with respect
to the x, y velocities at the steer axis of a chosen ‘master’ wheel.
This model is not subject to the ω = 0 or the pure translation sin-
gularity that is commonly observed with ICR-based modeling.
We then rewrote this kinematic model in state-space form and
determined that the system is controllable for all xxx. Following
this proof, we proposed a novel master-slave control structure
that solves the nonlinear control problem for the ‘master’ wheel
kinematic model, and coordinates the drive speeds and steer an-
gles of the other ‘slave’ wheels such that their drive axes always

0 2 4 6 8 10 12
time [s]

0

0.2

0.4

0.6

0.8

1

x

x1
x2
x3

Figure 8: State, xxx, response in 12 s time interval. x1,x2, and x3
share the same time response

0 2 4 6 8 10 12
time [s]

0

0.1

0.2

0.3

0.4

0.5
u

u1
u2
u3

Figure 9: Control input from feedback linearization

intersect at the robot’s ICR. This control structure makes the con-
trol problem for such WMRs more tractable. We then proposed
feedback linearization as a nonlinear control solution for the sys-
tem.

Our modeling and control technique was then simulated in
MATLAB. The resulting time-response plots for the states, con-
trol input, as well as the drive speeds and steer angles verify the
validity of this approach. Furthermore, despite the well-known
difficulty in setting saturation limits on the feedback linearized
control input, we developed a method to define drive speed satu-
ration limits to make our proposed control structure feasible for
hardware.
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While the control structure proposed in this paper is defined
specifically for a WMR with four centered orientable conven-
tional (COC) wheels, it is easily extendable to systems with n-
COC wheels. Future work will include implementing the pro-
posed method on our robot and evaluating its performance. To
cope with model uncertainty, it may be necessary to combine
feedback linearization with robust or adaptive control. We also
plan on generalizing the idea of ICR-based master-slave kine-
matic control and modeling to include WMRs with all wheel
types.
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